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A HYBRID METHOD FOR THE NUMERICAL SOLUTION OF THE ELECTRON TRANSPORT
EQUATION: THE REDUCED SOURCE METHOD

by

Gary S. Fraley, Kenneth Lee, and Michael A. Stroscio

ABSTRACT

The problem of correctly transporting the supra-
thermal electrons produced in laser-plasma interactions
is complicated by the fact that the suprathermal mean
free path varies over approximately ten orders of mag-
nitude for typical laser fusion conditions. The reduced
source method (RSM) offers a means of treating transport
under such conditions. We derive the reduced source for
the special case where the initial distribution is
determined by multigroup diffusion. This special case
represents an unnecessary restriction on the applica-
tion of RSM to suprathermal electron transport.

I.  INTRODUCTION

One of the major difficulties encountered in transporting suprathermal
electrons produced by laser-plasma 1'n’ce\r‘alct1'on]'5 is due to the rapidly varying
mean free path of the suprathermal electrons. The mean free path, Amfp’ is
related to the suprathermal velocity, v, and the background electron density,
Ng» through Amfp mv“/ne. For typical laser-produced plasmas, Amfp varies over
ten orders of magnitude from the underdense region outside of the critical
surface to the overdense region inside of the critical surface. An adequate
treatment of suprathermal electron transport must yield accurate solutions
in the long mean free path (free streaming) 1imit as well as the short mean

free path (diffusive) limit.




Previous attempts to treat suprathermal electron transport have utilized
a wide variety of numerical schemes. (1) The multigroup diffusion method,
where the distribution function is taken as a truncated angular expansion of
Legendre polynomials, has been utilized in several treatments of SET.6-9
These algorithms are suitable in short mean free path regions but are inadequate
in the free streaming limit. (2) In addition, Monte Carlo treatments of SET
are avaﬂab]e.s’]o_]4 The Monte Carlo treatment is, of course, adequate for
all mean free paths; however, it is generally acknowledged that this method
requires a relatively large number of numerical operations. (3) The method
of discrete ordinates, where the transport equation is evaluated in a set of
discrete angular directions, has been applied to SET and it is found to require
fewer numerical operations than Monte Carlo tr‘ansport.m—]9 This method is
difficult to include in a Lagrangian hydrodynamics code. (4) Progress has
been made in SET by utilizing a two-dimensional, two-fluid diffusion treat-
ment that 1is certainly adequate in the diffusion \r'egime.]0 (5) A hybrid model,
which attempts to treat each velocity group in a given hydrodynamic cell by
either diffusion or free streaming equations, has been developed.20 This model
does not provide transport solutions that are independent of the mean free
path that is chosen to separate the long and short mean free path regimes. In
addition, it is necessary to restrict the source distribution in ways that
may not be consistent with the existence of plasma instabilities such as the
Weibel instabi]ity.21’22 (6) The transport of long mean free path electrons
in the region of resonant fields has been accomplished by performing a "bounce-
average."23 Appropriate methods of interfacing this analysis with the transport
in the short mean free path regime are unclear. (7) A relativistic transport
equation24 has been cast in the multigroup diffusion form.

These methods of treating SET all have their own regime of validity. The
most general method is Monte Carlo transport; however, there is a clear need to
reduce the number of required computations. A method which is capable of (a)
reducing the number numerical operations required and (b) yielding the accu-
racy of a full Monte Carlo scheme has been utilized by one of us (G.S.F.) in

the area of radiation transport.zs’27

This method, the reduced source method
(RSM), is discussed in the context of SET. Specifically, in Section II we
present the transport equation appropriate to SET. In Section III we give

a general discussion of the reduced source method and derive the reduced source




for a special case. In Section IV we present a preliminary iteration scheme
for the inclusion of electric fields.

II. SUPRATHERMAL ELECTRON TRANSPORT EQUATION

The equation describing the transport of suprathermal electrons has fre-
quently been taken to be a Fokker-Planck approximation to the Boltzmann
equation.s’”’28 In this treatment, the Boltzmann equation for the distribution
function f(r,v,t,u) is taken as

ot ar r M omy v (1)
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for the case of spherical geometry in one dimension. In Eq. (1), u = cosé,

8 is the angle between the velocity and radius vectors, and r, v, and t are the
radius, suprathermal velocity, and time, respectively. S is the source of
suprathermal electrons and F is taken as et to include the possiblity of elec-
tric field generation. The collision operator, gz > in the Timit where
collisions are dominated by small-angle scattering aﬁa lhe suprathermal-
suprathermal interaction is assumed to be small, becomes the Fokker-Planck
operator, '

of _ -dne Meof ,e(z+1) 0 2y of (2)
(atcoﬂ oM gnA{VZBV+2_ v 311(]—“)311

In Eq. (2), Na is the cold electron density, Z is the charge of the cold ionic
background, #n A is a coulomb logarithm, and e and m, are the electron charge
and mass, respectively. We note that Ref. 17 contains a sign error in the lead-
ing term of the Fokker-Planck operator. Defining the flux of particles,

¢ = vf, Eqs. (1) and (2) may be combined to give
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where ( )— TR n A . In our discussion of the RSM, it is convenient
Ma



to cast Eq. (3) into the form

L(9) =S, (4)
where
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ITI. DERIVATION OF THE REDUCED SOURCE FOR SPECIAL CONDITIONS

The basic philosophy of the RSM has been discussed in detail in Refs. 26
and 27. It is assumed that an approximate solution to Eq. (4) has been obtained
by any convenient means, e.g., multigroup diffusion. Let this approximate
solution be p Then,

L(¢) - L(¢A) =S - SA = SR’ (6)

where SR is the reduced source and SA is the approximate source corresponding

to ¢A' From Eq. (6) the reduced source may be written as

SR =S - L(¢A) . (7)
Letting § = ¢ - dps We obtain for a linear operator L,

L(s) = SR . (8)

(The operator L of Eq. (5) is not Tinear since the self-consistent electric
field depends on the particle flux ¢. Discussion of this point is deferred to
Section IV.) From Egs. (7) and (8) the basic idea of the RSM is apparent: an
approximate solution ¢A is obtained by any convenient method and is utilized

to calculate the reduced source, SR’ which is taken as the source in Eq. (8).
Equation (8) is solved by the Monte Carlo method. For cases where ¢, is a good
approximation to the exact solution, it follows that SR =S - SA << S; hence,
the Monte Carlo solution of Eq. (8) requires many fewer numerical operations
for an accurate solution than does Eq. (4). This last observation follows from




the fact that the number of Monte Carlo simulation particles required for a
solution of given accuracy is proportional to the square of the source.

Multigroup diffusion generally provides an accurate solution to ¢ in the
short mean free path regime. In particular, the multigroup diffusion solution
is expected to be accurate in the overdense region of the plasma, but is, of
course, suspect in the plasma corona.

In the remainder of this report, we consider the special case where ¢A is
approximated by the multigroup diffusion method. In this case it is possible
that ¢A is a poor approximation to ¢ in the corona and we expect the Monte
Carlo solution of Eq. (8) to require essentially the same number of numerical
operations as a full Monte Carlo treatment. It is possible that an accurate
solution for ¢A could be obtained in the corona by the techniques of Ref. 23.
This possibility is being considered; however, this is not discussed here.

The multigroup diffusion technique in the P]--approximafion is applied
by assuming a solution of the form

Pp = by T PH (9)

" where the expansion has been truncated after the P1 term. Upon taking the
first moment, z%-f ( )dQ, and second moment, %E'f ( Judg , of Eq. (4)
with ¢ = ¢A’ one obtains
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where <S>= l]l_n /Sde, <pS>= l]l—'rr JuSd2 , and we have used
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in obtaining the moments. Equations (10) and (11) represent, respectively, the
first and second moments of the transport equation. These equations are rewritten
as

3¢, a¢
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where T (p) is defined by comparison with Eq. (10) [Eq.(11)]. From Eqgs. (4)
and (7) with ¢ = ¢ps ONE obtains
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where u2o = 1/3. This reduced source for the electron transport equation differs
from that derived for radiation transport26’27 in three respects: (1) an
anisotropic source must be included as is represented by the presence of the
first three terms in Eq. (15); (2) the electric field must be included in any
self-consistent one-dimensional formulation as is manifest in Eq. (15) by the
presence of the terms containing |E|; and (3) the remaining terms in Eq. (15),
other than electric field or source terms, differ from the corresponding radi-
ation transport reduced source as a result of the basic differences in the
electron and radiation transport equations. The electric fields in Eq. (15)
have been treated purely formally to this point. That is, the electric field
has been taken as given independently of the particie flux ¢. This is, of
course, not the case and this must be corrected by iteration of the electric
field as a function of the particle flux.

IV. A PRELIMINARY ITERATION SCHEME FOR THE INCLUSION OF ELECTRIC FIELDS

The electric field depends on the current, JH, associated with the supra-
thermal electron flux ¢ and in turn on the cold return current, Jc. The first
step in the proposed iteration scheme is to utilize the multigroup diffusion
approximation to ¢, namely op in order to calculate |E°|= |E(¢A)|. This
value of |E| is then inserted into L and Eq. (8) is solved by the Monte Carlo
method. The new value of ¢, ¢{!) is then used to calculate |E*|= |E(¢())].
This iteration is repeated until



<Eq s (16a)

(16b)

where n refers to the index defining the iteration and € and =, represent
user-defined convergence criteria.

V.  CONCLUSION AND SUMMARY

The RSM provides a consistent method of treating SET in both the short
and long mean free path regimes of a laser-produced plasma. In addition to
reducing the time required by a full (but accurate) Monte Carlo simulation,
the RSM provides a method of interfacing different methods of solution. We
have restricted our discussion to the case where an approximate solution is
obtained by the multigroup diffusion approximation. In this case the transport
solution in the plasma corona is suspect and we expect to do essentially a full
Monte Carlo treatment in the corona.

The RSM is by no means limited to this treatment. For example, a promising
approach which is being investigated is based on using a multigroup diffusion
solution for Pp in the short mean free path regime and a "bounce-averaged"
solution for I in the long mean free path regime where resonant fields and
the reflecting plasma sheath play major roles in suprathermal electron trans-
port.

In this report, we have presented a general discussion of the RSM for SET
and have given an example that obtains when op is determined by multigroup
diffusion. This is not necessarily the best scheme available. We are present-
ly investigating other techniques of applying the RSM to SET.
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